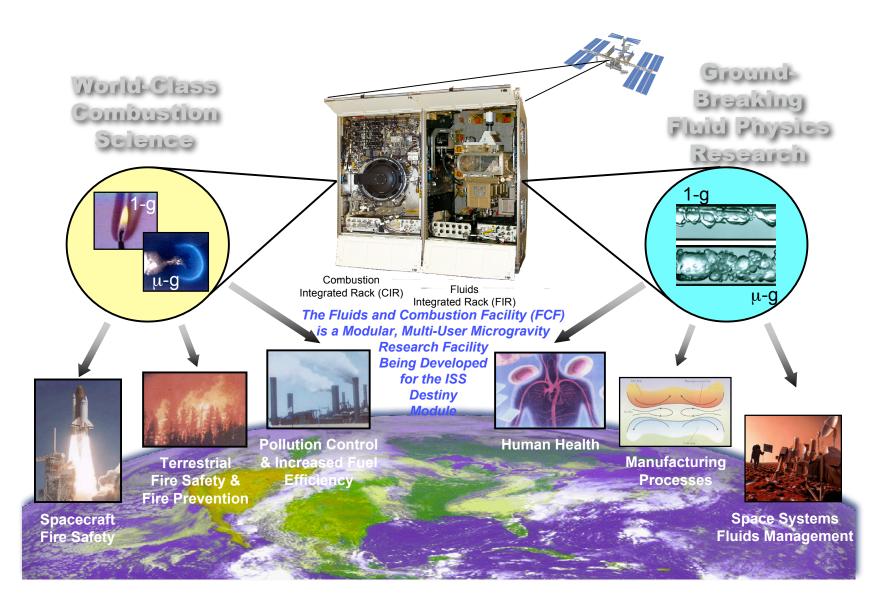
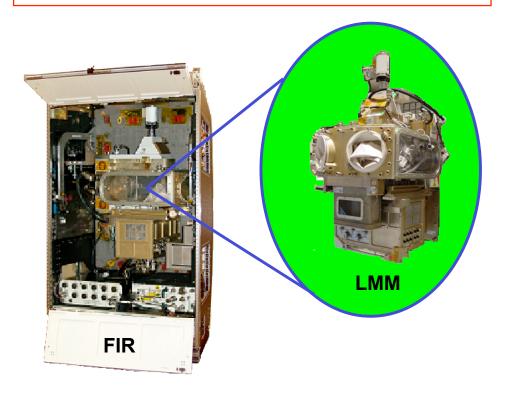

FCF Overview

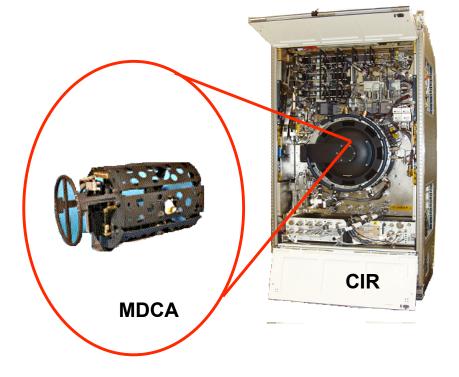
Robert Corban - NASA FCF Project Manager Terence O'Malley - NASA CIR & Initial Payloads Projects Manager Ronald Sicker - NASA FIR & Initial Payloads Projects Manager



FCF Organization

FCF Research Focus

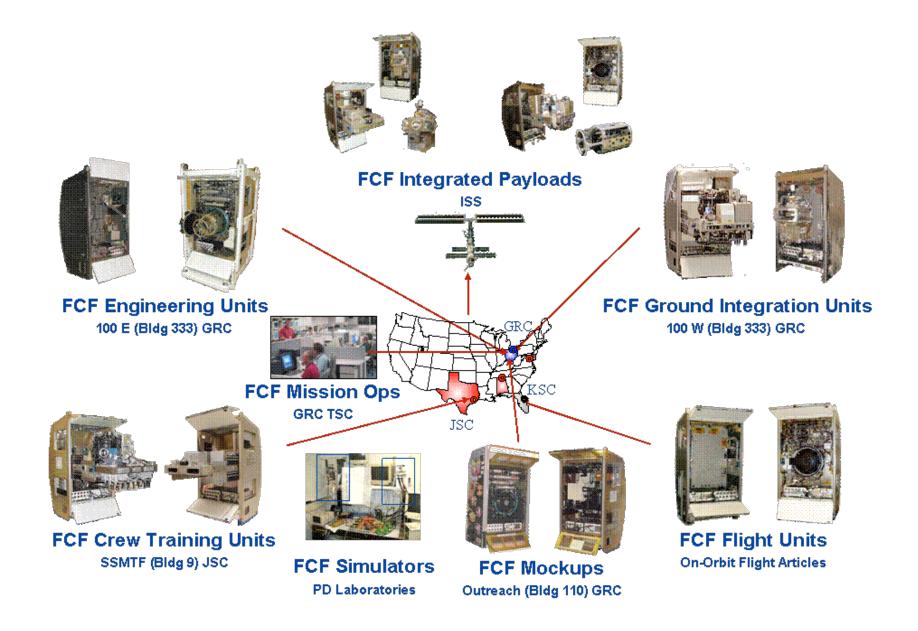




FCF Initial Payloads

Multi-User Droplet Combustion Apparatus (MDCA)

Initial combustion experiments performed in the FCF will be droplet combustion experiments conducted in the CIR. These experiments will study small droplets of pure alcohol and hydrocarbon fuels burning in an oxygen/inert gas atmosphere.



Light Microscopy Module (LMM)

The LMM is a microscopic fluids research instrument featuring an imaging light microscope with diagnostics. Imaging techniques of high resolution video microscopy, bright field, dark field, phase contrast, differential interference contrast, fluorescence and confocal microscopy are combined in a single LMM configuration with dynamic and static light scattering techniques to allow a very broad characterization of fluids, colloids and two-phase media.

FCF Program Overview

Combustion Integrated Rack (CIR)

WBS: 825080.04.02.20.01

PM: Terence O'Malley, NASA GRC **Engineering Team:** ZIN Technologies, Inc.

Objective:

 The Combustion Integrated Rack is a facility designed to support sustained systematic combustion research and technology experiments on the International Space Station.

Relevance/Impact:

The CIR will accommodate experiments that address critical needs in the areas of spacecraft fire safety (i.e., fire prevention, detection and suppression), incineration of solid wastes, power generation, flame spread, soot and polycyclic aromatic hydrocarbons, in-situ resource utilization, environmental monitoring and materials synthesis.

Development Approach:

- The CIR is being developed as part of the Fluids & Combustion Facility (FCF).
- The FCF system consists of a Flight Segment and a Ground Segment.
- All avionics and diagnostics are contained in orbital replacement units with simple interfaces that allow for easy changeout/reconfiguration.
- Protoflight approach was taken for most of the hardware.
- FCF operates together with payload experiment equipment, ground-based operations facilities and the FCF ground segment.
- The CIR is designed for remote/autonomous operations.

Glenn Research Center

ISS Resource Requirements

Accommodation (carrier)	ISS US Laboratory					
Upmass (kg) (w/o packing factor)	881					
Volume (m³) (w/o packing factor)	0.4 (stowed hardware)					
Power (kw) (peak)	1.9 Kw					
Crew Time (hrs) (initial installation & setup)	25					
Launch/Increment	ULF-2/Increment 17 ⇒					

Project Life Cycle Schedule

Milestones	SCR	HCR	PDR	CDR	VRR	Safety	FHA	Launch	Ops	Return	Final Report
Actual/ Baseline	N/A	6/1998	2/2001	5/2002	2/2003	7/2005	4/2007	10/2008	Inc. 18 ⇒	TBD	TBD

Revision Date: 2/5/07

PM: Ron Sicker, NASA GRC **Engineering Team:** ZIN Technologies, Inc.

Objective:

 Develop a flexible, easily configurable, multi-use facility that provides core diagnostics and data acquisition & control capabilities that will support a broad range of research in support of Space Exploration and other endeavors.

Relevance/Impact:

The Fluids Integrated Rack (FIR) will support strategic research to enable storage/transfer of two-phase fluids, characterize two-phase heat transfer, support development of multi-phase environmental controls for life support systems, and support human health in physiological/medical systems research to enable long term missions to the Moon and Mars.

Development Approach:

- The FIR is being developed as part of the Fluids & Combustion Facility (FCF).
- The FCF system consists of a Flight Segment and a Ground Segment.
- All avionics and diagnostics are contained in orbital replacement units with simple interfaces that allow for easy changeout/reconfiguration.
- Protoflight approach was taken for most of the hardware.
- FCF operates together with payload experiment equipment, groundbased operations facilities and the FCF ground segment.
- The FIR is designed for remote/autonomous operations.

Glenn Research Center

FIR Flight Unit

ISS Resource Requirements

100 Resource Requirements					
Accommodation (carrier)	ISS US Laboratory				
Upmass (kg) (w/o packing factor)	745 (includes upmass for stowed ARIS hardware)				
Volume (m³) (w/o packing factor)	0.12 (off-rack ascent volume)				
Power (kw) (peak)	1.1				
Crew Time (hrs) (initial installation & setup)	6				
Launch/Increment	17A/Increment 19 ⇒				

Project Life Cycle Schedule

Milestones	SCR	HCR	PDR	CDR	VRR	Safety	FHA	Launch	Ops	Return	Final Report
Actual/ Baseline	N/A	6/1998	2/2001	12/2002	2/2003	7/2005	2/2007	4/2009	Inc. 19 ⇒	TBD	TBD

Revision Date: 2/5/07

FCF Sustaining Engineering (FCF)

WBS: 825080.04.02.20.01

PM: Robert Corban, NASA GRC **Engineering Team:** ZIN Technologies, Inc.

Glenn Research Center

Objective:

- Provide the engineering sustaining engineering support for the CIR & FIR, along with Telescience operations & FCF On-orbit operations,
- Complete all FCF products that includes any remaining GIU activities, integration and operations products, TSC readiness, and Mission Integration Planning.
- Prepare the FCF flight units for launch that includes poststorage review and flight readiness reviews.

Relevance/Impact:

- Support strategic research on the ISS in support of the Exploration Initiative, as well as basic research.
- Provide telescience operations for the payload community in support of ISS operations.

Development Approach:

- Maintain the Prime Contractor workforce to assure development knowledge is retained.
- Complete operational products using the existing team.
- Advocate for the FIR & CIR to be the payloads of choice for ULF-2.

FIR Flight Unit

CIR Flight Unit

Schedule

Octroduc	
Key Milestones/Deliverables	Date
FIR FHA	2/2007
CIR FHA	4/2007
FIR & CIR GIU Acceptance	5/2007
Spares Completed	2/2008
TSC/FCF Ops Readiness Review	3/2008
COFR	5/2008
Launch (CIR)	10/2008
MDCA On-Orbit Operations Begin	11/2008
Launch (FIR)	4/2009
LMM On-Orbit Operations Begin	5/2009

Revision Date: 2/5/07